- The force of gravity $\left(\mathrm{F}_{\mathrm{g}}\right)$ between any two objects is directly proportional to the product of their masses
- F_{g} is inversely proportional to the square of the distance between the object's centres (inverse square law)
or $\ldots \quad \mathrm{F}_{\mathrm{g}} \alpha \mathrm{m}_{1} \mathrm{~m}_{2} \quad$ and $\quad F_{g} \alpha \frac{1}{r^{2}}$
so with a constant of proportionality (called the Universal
Gravitational Constant, G):

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}}
$$

This constant was measured experimentally by Henry Cavendish and is now know to be

$$
6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

Gravity

- is always attractive
- acts between every two masses in the known universe
- has infinite range
- is the weakest of the four fundamental forces

1. Neptune has a radius of $2.48 \times 10^{7} \mathrm{~m}$ and a mass of 1.03×10^{26} kg. What is
a) the gravitational field strength on the surface of Neptune?
b) Iggy's weight on the planet? (his mass is 85 kg)
a) By definition, gravitational field strength (" g ") is the force of gravity acting on 1 kg of mass, so ...

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}}
$$

$$
g=\frac{G m_{1}}{r^{2}}\left(\text { taking } \mathrm{m}_{2} \text { to be } 1 \mathrm{~kg}\right)
$$

$$
g=\frac{\left(6.67 \times 10^{-11}\right)\left(1.03 \times 10^{26}\right)}{\left(2.48 \times 10^{7}\right)^{2}}
$$

$$
\mathrm{g}=11.2 \mathrm{~N} / \mathrm{kg}
$$

b) $\quad F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$

$$
F_{g}=\frac{\left(6.67 \times 10^{-11}\right)\left(1.03 \times 10^{26}\right)(85)}{\left(2.48 \times 10^{7}\right)^{2}}
$$

$\mathrm{F}_{\mathrm{g}}=949.5 \mathrm{~N}$
OR $\quad \mathrm{F}_{\mathrm{g}}=\mathrm{mg}=(85)(11.2)$
$=952 \mathrm{~N} \quad$ (the values are equal when rounded off the same way)

